
OPTICAL CLUSTER FINDING WITH AN ADAPTIVE MATCHED-FILTER TECHNIQUE:
ALGORITHM AND COMPARISON WITH SIMULATIONS

Feng Dong,
1
Elena Pierpaoli,

2
James E. Gunn,

3
and Risa H. Wechsler

4

Received 2007 May 28; accepted 2007 August 13

ABSTRACT

Wepresent amodified adaptivematched-filter algorithm designed to identify clusters of galaxies inwide-field imaging
surveys such as the SloanDigital Sky Survey (SDSS). The cluster-finding technique is fully adaptive to imaging surveys
with spectroscopic coverage, multicolor photometric redshifts, no redshift information at all, and any combination of
these within one survey. It works with high efficiency in multiband imaging surveys for which photometric redshifts can
be estimated with well-understood error distributions. Tests of the algorithm on realistic mock SDSS catalogs suggest
that the detected sample is �85% complete and over 90% pure for clusters with masses above 1:0 ; 1014 h�1 M� and
redshifts up to z ¼ 0:45. The errors of estimated cluster redshifts from a maximum likelihood method are shown to be
small (typically less than 0.01) over thewhole redshift range,with photometric redshift errors typical of those found in the
SDSS. Inside the spherical radius corresponding to a galaxy overdensity of� ¼ 200,we find the derived cluster richness
�200 to be a roughly linear indicator of its virial massM200, whichwell recovers the relation between total luminosity and
cluster mass of the input simulation.

Subject headinggs: cosmology: theory — galaxies: clusters: general — large-scale structure of universe

1. INTRODUCTION

Clusters of galaxies are the most massive virialized systems in
the universe, and have been extensively used to study galaxy pop-
ulation and evolution (Dressler 1984; Dressler & Gunn 1992),
to trace the large-scale structure of the universe (Bahcall 1988;
Postman et al. 1992), and to constrain cosmology (Evrard 1989;
Bahcall et al. 1999; Henry 2000; Pierpaoli et al. 2001, 2003).
Given the important role that clusters of galaxies play in the stud-
ies of both astrophysics and cosmology, tremendous efforts have
been made during the past several decades to search for these
systems. The first large samples of clusters were identified by
looking for projected galaxy overdensities through visual inspec-
tion of photographic plates (Abell 1958; Abell et al. 1989; Zwicky
et al. 1968). These catalogs made pioneering contributions to our
understanding of the extragalactic universe, and since their gen-
eration have opened many new frontiers in the studies of galaxy
clusters. However, the compilation of a relatively complete and
pure sample of galaxy clusters has remained far from trivial. To
date, the Abell catalog, which contains about 4000 rich clusters
to a redshift of z � 0:2, is still themost widely used cluster catalog
in the field, although it was realized early that visually constructed
catalogs suffer from projection effects, subjectivity, and large un-
certainties in estimated properties (Sutherland 1988). It is difficult
to use these catalogs for statistical studies in cosmology because
of these uncertainties, and because the selection function and false-
positive rates of such cluster samples are hard to quantify.

To relieve some of these concerns, other approaches for iden-
tifying clusters have also been designed and implemented, such
as the reconstruction of the full three-dimensional structures in
complete redshift surveys (Huchra&Geller 1982;Geller&Huchra

1983; Ramella et al. 1997), the detection of clusters in X-ray sur-
veys (Gioia et al. 1990; Edge et al. 1990; Ebeling et al. 1998; Rosati
et al. 1998; Romer et al. 2000; Scharf et al. 2000; Böhringer et al.
2001, 2004; Mullis et al. 2003), and the utilization of the Sunyaev-
Zeldovich effect (Carlstrom et al. 2000; Mohr et al. 2002; Pierpaoli
et al. 2005) and weak gravitational lensing (Schneider 1996;
Wittman et al. 2001) in the search for clusters. Moreover, the
realization of large and deep galaxy surveys in recent years has
revived optical cluster-finding endeavors, and prompted the de-
velopment of more automated and rigorous algorithms to select
clusters from imaging surveys. Using multicolor photometric
data fromwhich photometric redshifts can be estimated, it is now
possible tomitigate the problems of projection effects, and to quan-
titatively analyze the selection bias. Automated peak-finding tech-
niques in optical cluster searches were attempted by Shectman
(1985), and later used in the Edinburgh/Durham survey (Lumsden
et al. 1992), as well as the Automatic Plate Measurement Facility
survey (Dalton et al. 1994; Dalton et al. 1997). In the construction
of the cluster catalog from the Palomar Distant Cluster Survey
(Postman et al. 1996), a matched-filter algorithm was developed
to select clusters from a photometric galaxy sample. It was widely
used in subsequent surveys, and several variants have been put
forward (Kawasaki et al. 1998; Schuecker & Boehringer 1998;
Kepner et al. 1999; Kim et al. 2002; White & Kochanek 2002).
Meanwhile, with knowledge of the existence of the E/S0 ridge-
line of cluster galaxies in color-magnitude space and the aid of
multicolor CCD photometry, several color-based cluster-finding
techniques have also been investigated (Gladders & Yee 2000,
2005; Goto et al. 2002; Miller et al. 2005). Some of these have
already been successfully applied to select clusters from the Sloan
Digital Sky Survey (SDSS) data (Goto et al. 2002; Annis et al.
2002; Bahcall et al. 2003;Miller et al. 2005; Koester et al. 2007).
The SDSS (York et al. 2000) is a five-band CCD imaging sur-

vey of about 104 deg2 in the high-latitude north Galactic cap and
a smaller deeper region in the south, followed by an extensive
multifiber spectroscopic survey. The imaging survey is carried
out in drift-scan mode in five SDSS filters (u, g, r, i, and z) to a
limiting magnitude of r � 22:5 (Fukugita et al. 1996; Gunn et al.
1998; Lupton et al. 2001; Smith et al. 2002). The spectroscopic
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survey targets�106 galaxies to r � 17:7, with a median redshift
of z � 0:1 (Strauss et al. 2002), and a smaller deeper sample of
�105 luminous red galaxies (LRGs) out to z � 0:5 (Eisenstein
et al. 2001). In this paper, we discuss amodified adaptivematched-
filter technique that incorporates several new features absent in
previous algorithms, and which is designed to detect clusters
using both the SDSS imaging and spectroscopic data; it could
readily be adapted to other similar multiband, large-area galaxy
surveys for construction of optically selected cluster samples. This
is the first of a series of papers that will explore the application of
the technique to select clusters from the SDSS.

The general idea of thematched-filter method relies on the fact
that clusters show, on average, a typical density profile, now
widely assumed to be the NFW form first suggested by Navarro,
Frenk, and White (Navarro et al. 1996). Assuming that galaxies
trace dark matter, we expect galaxies within clusters to be dis-
tributed according to such a profile. The algorithm selects re-
gions in the sky where the distribution of galaxies corresponds to
the projection of the average cluster density profile. In addition,
it is possible to specify galaxy redshift information inside clus-
ters, and to use prior knowledge of the galaxy luminosity func-
tion. The combination of these matched subfilters thus enables
us to extract a quantitative signal corresponding to the existence
of a cluster at a given location in the surveyed sky area.

The modified matched-filter technique presented in this paper
can fully adapt to imaging surveys with spectroscopic measure-
ments,multicolor photometric redshifts, no redshift information at
all, and any combination of these within one survey. In the SDSS,
where photometric redshifts can be estimated with well-understood
error distributions from the five-band (u, g, r, i, and z) multicolor
photometry, thematched-filter technique described here utilizes not
only the spectroscopic coverage for the brightmain sample galaxies
and LRGs, but also the photometric redshift information formost
of the galaxies detected in the imaging survey. This expands the
input galaxy sample that can be fed into the cluster-finding al-
gorithm far beyond what is obtainable by pure spectroscopic
methods (e.g., Miller et al. 2005). The obtained composite cluster
catalog can also go much deeper in redshift (z � 0:4 0:5 in this
case) than the typical z � 0:2 limit for spectroscopic samples, due
to the lack of availability of spectroscopic measurements for faint,
deep galaxies.

Since the matched-filter technique does not explicitly use the
information about the red sequence to select clusters, as is done
in some color-based cluster-finding methods (Annis et al. 2002;
Miller et al. 2005; Koester et al. 2007), it can theoretically detect
clusters of any type in color, and is not restricted only to old, red
E/S0 galaxies. Such clusters likely dominate the cluster population,
but may not constitute all of it, especially as one probes systems
of lower richness and at higher redshifts. The use of both spectro-
scopic and photometric redshift information largely eliminates
projection effects and removes most of the phantom clusters. The
matched filter also generates accurate quantitative estimates of
derived cluster properties such as redshift, scale, richness, and
concentration, and produces quantitative detection likelihoods,
indicative of the combined information for both red and blue gal-
axies identified as cluster members. These facilitate further stud-
ies of detected systems andmake easier the comparison to clusters
selected by other methods. One major concern for the matched-
filter technique is the fact that determination of these parameters
depends on the specific cluster model we use to build the relevant
filters. However, these effects can be minimized by careful as-
sumptions about the shape and evolution of the luminosity function,
and by the fact that our density filter is self-adaptive to different
cluster scales and concentrations. The clusters selected by the al-

gorithmwill provide the necessary sample onwhichwe then apply
an iterative procedure aimed at refining the constraints on the clus-
ters’ properties. More details will be discussed in x 2 and subse-
quent work following this paper.

The newalgorithmpresented here differs frompreviousmatched-
filter implementations (Kepner et al. 1999; Kim et al. 2002) in
several ways.We use a uniform Poisson likelihood analysis, which
is only the second step in the approach by Kepner et al. (1999),
following a first pass using Gaussian statistics for preselection of
clusters. This avoids the common problem for high-redshift clus-
ters of having too few galaxies in any cell of interest for Gaussian
statistics to apply; our approach yields correct likelihoods even at
the detection stage. In addition, both the core radius and virial
radius of thematched filter are adaptive over the typical observed
dynamical range for clusters, in contrast tomost previous cluster-
finding techniques, which set the cluster core radius or search
radius at a fixed value. For each individual cluster, a best-fit core
radius is found to maximize the likelihood match, as well as an
outer radius inside which the galaxy overdensity reaches� ¼ 200.
The cluster richness is then normalized to be the light contained
within this virial radius, which we find correlates better with the
mass of gravitational systems whose extent is defined by density
contrast, as is widely adopted in theoretical studies. The new fea-
tures of our modified algorithm will be further discussed in x 2.

In order to understand the biases and the selection functions of
our algorithm, we test it on a mock SDSS catalog, which has been
constructed from the Hubble Volume Simulation (Evrard et al.
2002) by assigning luminosities and colors to the dark matter par-
ticles in a manner that reproduces many characteristics of the
galaxy population from SDSS observations. The ‘‘observations’’
of the simulations are then further modified so that the redshift
scatter of those galaxies that have photometric, but no spectro-
scopic, redshifts corresponds to that of the photometric redshift
errors in actual SDSS data. The comparison of the detected cluster
sample with halos in the simulation provides the only rigorous
way to assess how the observed cluster properties relate to the real
masses, and how the cluster sample can be used to derive cos-
mological constraints.

In x 2, we describe the modified adaptive matched-filter tech-
nique, and how it is used to extract the cluster sample. Section 3
presents the basic features of the simulated catalog that we adopted
for testing purposes. In x 4, we show results on the completeness
and purity of our cluster sample, and the expected scaling relations
inferred from runs on the simulations. We conclude in x 5.

A flat �CDM model with �m ¼ 0:3 and �� ¼ 0:7 is used
throughout this work, and we assume a Hubble constant ofH0 ¼
100 h km s�1 Mpc�1 if not specified otherwise.

2. THE CLUSTER-FINDING ALGORITHM

The matched-filter technique introduced here is a likelihood
method which identifies clusters by convolving the optical galaxy
survey with a set of filters based on a modeling of the cluster and
field galaxy distributions. A cluster radial surface density profile,
a galaxy luminosity function, and redshift information (when
available) are used to construct filters in position, magnitude,
and redshift space, from which a cluster likelihood map is gen-
erated. The peaks in the map thus correspond to candidate cluster
centers, where the matches between the survey data and the clus-
ter filters are optimized. The algorithm automatically provides
the probability for the detection, best-fit estimates of cluster prop-
erties including redshift, radius, and richness, as well as member-
ship assessment for each galaxy. The modified algorithm can be
fully adapted to current and future galaxy surveys in 2D (imaging),
2.5D (in which multicolor photometric redshifts and their errors
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can be estimated), and 3D (with full spectroscopic redshift mea-
surements). Using the apparentmagnitudes and, where applicable,
the redshift estimates, instead of simply searching for projected gal-
axy overdensities effectively suppresses the foreground-background
contamination, and the technique has proven to be an efficient
way of selecting clusters of galaxies from largemultiband optical
surveys.

In what follows, we first provide a general introduction on
how the likelihood function is constructed, and how we detect
clusters with thematched-filtermethod. This gives us an overview
of how the cluster catalog is derived. Then we discuss in more
detail the density models and subfilters used to construct the
likelihood. More specifically, we assume an NFW density profile,
a general Schechter luminosity function, and aGaussianmodel for
BCGs to model clusters, and we use the spectroscopic measure-
ments and obtained error distributions of galaxy photometric red-
shifts from the SDSS to incorporate redshift uncertainties. Finally,
we describe how to determine the set of best-fit parameters on
cluster properties thatmaximizes the likelihood at a given position
over a range of redshifts, scales, concentrations, and richnesses.

2.1. Likelihood Function

The likelihood function used here is based on the assumption
that the probability of finding galaxies in an infinitesimal bin in
angular position, apparent magnitude, and redshift space is given
by a Poisson distribution. Under this assumption, the total like-
lihood of many of such bins, which we take to be centered in the
location of the galaxies in the survey, is

lnL ¼ �Nf �
XNc

k¼1

Nk þ
XNg

i¼1

ln P(i); ð1Þ

whereNf is the total number offield galaxies expected within the
searching area, Ng is the total number of galaxies, and

PNc

k¼1 Nk

is normalized to be the number of galaxies brighter than L� as
members of the Nc clusters assumed in the model (see Appendix
C2 in Kepner et al. 1999 for a full derivation). Here, P(i) rep-
resents the predicted probability density of galaxies in a given
bin, which includes both probabilities of field galaxies (Pf ) and
of cluster members (Pc):

P(i) ¼ Pf (i)þ
XNc

k¼1

Pc(i; k): ð2Þ

These probabilities are the expected number densities for a given
location and magnitude.

The cluster catalog is constructed with an iterative procedure
similar to the one used in Kochanek et al. (2003). We start our
process from a density model of a smooth background with no
clusters. For each galaxy position, we then evaluate the likelihood
increment we would obtain by assuming that there is in fact a
cluster centered on that galaxy. The likelihood is then optimized
by varying the cluster galaxy number Nk, the redshift, and the
cluster scale length. At each iteration, we retain the cluster can-
didate that results in the greatest likelihood increase. We incorpo-
rate it into our density model, and restart the procedure. Therefore,
the function for finding the kth cluster in the whole surveyed area is

� lnL(k) ¼ �Nk þ
PNg

i¼1 ln
Pf (i)þ

Pk
j¼1 Pc(i; j)

Pf (i)þ
Pk�1

j¼1 Pc(i; j)

" #
: ð3Þ

A list of cluster candidates then becomes available in decreasing
order of detection likelihoods. For each candidate, one has derived

properties, including best-fit position, scale, richness, and estimated
redshift. The initial cluster catalog allows us to further inspect
each individual candidate for exploration of substructure and place
better constraints on previously fitted quantities.

2.2. Density Model

As both field and cluster galaxies are found in the survey, the
probability of finding a galaxy in a given bin depends on the
density of both of these populations (see eq. [2]). For a galaxy i
with angular position a i, r-band apparent magnitudemr

i , and red-
shift zi (when available), the background number density Pf (i)
can be directly extracted from the global number counts of the gal-
axy survey,

Pf (i) ¼
dN

dmdz
(mr

i ; zi); ð4Þ

although this must be modified to account for the effects of gal-
axy redshift uncertainties if photometric redshift estimates are used.
For a cluster k located at ak with proper scale length rck , red-

shift zk , and galaxy number Nk, the probability of galaxy i being
a member of k, Pc(i; k), is just the product of a surface density
profile �c and a luminosity function �c at the cluster’s redshift,
times a distribution function f (zi � zk) that expresses redshift
uncertainties:

Pc(i; k) ¼ Nk�c DA(zk )q ik½ ��c mr
i �D(zk)

� �
f zi � zkð Þ; ð5Þ

where D(zk) is defined through

Mr
i ¼ mr

i � 5 log DL(zk )=10 pc½ � � k(zk) ¼ mr
i �D(zk); ð6Þ

whereDA(zk ) andDL(zk) are the angular diameter and luminosity
distance, respectively, at the cluster’s redshift zk , and where k(zk)
is the k-correction. The conversion of units in luminosity and
distance is conducted by performing proper k-corrections for gal-
axies of different spectral types and by choosing the proper cos-
mology (see x 1).

2.3. Subfilters

Based on current observational studies and findings from dark
matter halos, as well as for convenient comparisons to theoretical
models widely used in analytical studies and N-body simulations,
we assume that the density profile of galaxies within a cluster
follows the form of a NFW profile (Navarro et al. 1996), which in
three dimensions is given by

�c(r) ¼
1

4�r3cF(c)

1

r=rcð Þ(1þ r=rc)
2
; ð7Þ

where c is the concentration parameter and F(c) is the typi-
cal normalization factor for galaxies inside the virial radius of
the cluster, rv ¼ crc. The 3D profile is then integrated along the
line of sight to derive a projected surface density profile �c(r),
which is expressible as a much more complicated analytical
form (see Bartelmann 1996). The profile is normalized so thatR crc
0

2�r�c(r) dr ¼ 1.
The search radius for galaxies belonging to the cluster is set to

be the virial radius of the cluster, or more specifically here, the
radius inside which the mass overdensity is 200 times the critical
density, i.e., 200��1

m times the average background (Evrard et al.
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2002). Since it is hard to directly measure the cluster mass over-
density in observations, we instead determine the virial radius
inside which the space density of cluster galaxies is 200��1

m

times the mean field, assuming that the galaxy distribution in a
halo traces the overall dark matter distribution (see discussions
in Hansen et al. 2005), which has been suggested by recent ob-
servations and simulations (Lin et al. 2004; Nagai & Kravtsov
2005; Lin & Mohr 2007), and is supported by weak-lensing
measurements (Sheldon et al. 2004). For simplicity, we use r200
throughout this work to denote the cluster virial radius determined
by galaxy overdensities. The cluster richness is then defined to be
the total luminosity in units of L� inside r200.

As has been discussed before inmatched-filter studies (Postman
et al. 1996; Kim et al. 2002) and also shown by our own numerical
experiments, the efficiency of the filter is usually much more
sensitive to the overall filter cutoff radius than to the details of its
shape. Therefore, the determination of appropriate values for the
scale length in the cluster model is of particular importance, as it
may have a significant impact on the detection efficiency of the
cluster-finding algorithm. Most previous matched-filter methods
have used a carefully chosen fixed value for the model cluster cut-
off radii, and they compute the galaxy number or the richness of
clusters within such a fixed radius in physical units. Postman et al.
(1996) conclude that a fixed search radius of 1 Mpc h�1 is a near-
optimal choice in their radial filter, and this value has also been
adopted by Kepner et al. (1999) and Kim et al. (2002) in their
method, which assumes a modified Plummer-law model for the
surface density profile. InWhite&Kochanek (2002) andKochanek
et al. (2003), the authors set a fixed core radius of rc ¼ 200 kpc h�1

and a concentration parameter of c ¼ 4 for the NFW profile in
the cluster detection and mass estimates. Although we find from
observations and simulations that these choices are reasonable
values for typical rich clusters, a single fixed scale length for all
clusters over a wide range of masses and concentrations will
certainly degrade the signal-to-noise ratio and bias detection prob-
abilities, and will be responsible for at least part of the large
scatter observed in previous cluster mass-richness scaling rela-
tions. In our modified adaptive matched-filter algorithm, we
optimize the core radius for each individual cluster over the
dynamical range for typical galaxy clusters. For the core radius
value that maximizes the likelihood, we then compute the nor-
malized cluster richness according to the NFW profile with best-
fit parameters within a cluster virial radius r200, determined from
galaxy overdensities. We believe that this procedure is more sim-
ilar to and comparable with the virial mass as defined by density
contrast, which is used inmost theoretical studies and analyses of
simulations.

For themagnitude filter, we adopt a luminosity profile described
by a central galaxy plus a standard Schechter luminosity function
(Schechter 1976)

�(M ) ¼ dn

dM
¼ 0:4 ln 10n�

L

L�

� �1þ�

exp
�L

L�

� �
; ð8Þ

and the integrated luminosity function is

�(M ) ¼
Z M

�1
�(M ) dM ¼ n�� 1þ �; L=L�ð Þ: ð9Þ

Parameters for the global luminosity function are obtained from
the SDSS spectroscopic sample at the redshift of z ¼ 0:1 (Blanton
et al. 2003). To account for the evolutionary effects at higher red-
shifts, we allow a passive evolution of L�, which brightens about

0.8 mag from z ¼ 0 to z ¼ 0:5 (Loveday et al. 1992; Lilly et al.
1995b; Nagamine et al. 2001; Blanton et al. 2003; Loveday 2004;
Baldry et al. 2005; Ilbert et al. 2005). We assume that L� does not
vary as a function of cluster richness, an assumption supported by
the results of Hansen et al. (2005). Because the matched-filter
algorithm uses both a cluster galaxy luminosity function and a
field galaxy luminosity function, which are expected to be different
due to the morphology-density relation (Dressler 1980) and the
observed dependence of the luminosity function on galaxy over-
densities (Christlein 2000; Mo et al. 2004; Croton et al. 2005), it
would be desirable to model these separately. It would also be
desirable to further model the luminosity distributions according
to galaxy spectral types (Folkes et al. 1999; Lin et al. 1999; Hogg
et al. 2003). At this stage, however, only a single function has
been adopted, since the work on precise luminosity functions for
cluster galaxies of different types has just been started. We hope
to investigate this further on the basis of the first catalog we pro-
duce. Once a cluster catalog is available for galaxies in all red-
shift ranges, we can examine the impact of our assumptions about
the galaxy luminosity functions, as well as their evolution for
different environments and spectral types. In order to use the same
range in the luminosity function at all distances, and therefore
avoid the bias associated with errors in the assumed form of the
luminosity function, we cut off the luminosity function at 1 mag
below L�. We can still calculate total luminosities by integrating
the assumed form, and we use this in our richness calculation,
described below.

The existence of brightest cluster galaxies (BCGs) near the
cluster centers is incorporated into our cluster galaxy luminosity
model as a component separate from the main Schechter function
for satellites, as this distinction has been clearly seen in clusters
over a range of richnesses (Tremaine & Richstone 1977; Hansen
et al. 2005). We assume a Gaussian distribution for the luminos-
ities of these objects, and adopt the results fromLin&Mohr (2004)
for correlations between the BCG luminosity and host cluster
properties. More specifically, the BCG luminosity is assumed to
follow a single power law with a cluster richness LBCG � �1/4

200,
and we take the width of the Gaussian to be �0.5 mag (Lin &
Mohr 2004; Zheng et al. 2005;Hansen et al. 2005). The luminosity
of BCGs is assumed to evolve in the same way as L� does, i.e., the
luminosity at the mean of the Gaussian has a constant ratio to L�.
This is almost certainly incorrect in detail, but will be explored in
follow-up work once the catalog is constructed. This modification
of the general Schechter function enhances the detectability of typ-
ical clusters with BCGs, especially those at higher redshifts with
only few galaxies other than the BCG to be included in the ap-
parent magnitude-limited galaxy sample.

Thanks to the accurate five-band (u, g, r, i, and z) multicolor
photometry in the SDSS (York et al. 2000), as well as the asso-
ciated redshift survey for the bright main sample galaxies (Strauss
et al. 2002) and LRGs (Eisenstein et al. 2001), it is now also pos-
sible to retrieve redshift information for most of the galaxies that
we are going to use in the construction of the SDSS cluster catalog,
either photometrically or spectroscopically. For real SDSSdata cur-
rently available from DR5, we find that galaxies with valid pho-
tometric redshift estimates make up more than 96% of the whole
sample in the imaging data, within which about 1%, mostly bright,
red galaxies, havematched spectroscopicmeasurements from red-
shift surveys. Not surprisingly, the inclusion of galaxy redshift
estimates greatly improves the accuracy of the cluster redshift de-
terminations and significantly mitigates projection effects, thus
allowing the detection of much poorer systems than was possible
in previous work with no redshift measurements.
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The uncertainties of galaxy redshifts are assumed to follow
Gaussian distributions in the 2.5D and 3D cases, where in terms
of the f (z) function in equation (5) we have

f (zk ) ¼
exp �(zi � zk)

2=2�2
zi

h i
ffiffiffiffiffiffi
2�

p
�zi

: ð10Þ

For galaxies with computed photometric redshifts (described
below), we add to the cluster galaxy density model a third sub-
filter based on the distribution of derived redshift uncertainties in
the form of a combination of multiple Gaussian modes. These
error estimates are obtained by calibrating photometric red-
shifts with the real redshifts in the SDSS spectroscopic galaxy
sample and redshifts for other fainter (but smaller) overlapping
surveys. The analysis is done for red and blue galaxies separately
using the color separator by Strateva et al. (2001), and it is found
that a model using Gaussian modes with proper weights gener-
ally provides a good description of the bias and scatter in the
photometric redshifts for galaxies of both spectral types and in
different apparent magnitude bins. Some of the results are shown
in x 3.

In the 3D case in which spectroscopic redshifts of galaxies are
measured, we smooth the results in Gaussians with assigned clus-
ter velocity dispersions that vary in a range from 400 km s�1

(proper) for poorer clusters to 1200 km s�1 (proper) for the richest
systems in the selected cluster sample, according to several discrete
estimated richness classes. The same procedure outlined in the pre-
vious paragraph for photometric redshifts is applied to include this
redshift filter in the galaxy density model.

In addition,wefindgalaxies that either have invalid photometric
redshifts computed or that fall into a redshift and magnitude range
where no good calibrations are available. Such galaxies, which are
currently about 3%–5% of the whole sample, are assumed to have
no redshift estimates, and therefore no constraining filter. Hence,
we set up the appropriate scenario for each galaxy that adapts the
matched-filter algorithm to galaxy redshift estimates with varied
accuracy.

Finally, of course, we fit an overall amplitude, which represents
the cluster richness. Since its size, shape, and redshift are all deter-
mined at this point, we can express the amplitude however we like
in physical terms.We have chosen to use the total luminositywithin
r200 expressed as a multiple of L� (evolved to the relevant redshift
using 1.6 mag of luminosity evolution per unit redshift), which
we denote as �200.

2.4. Implementation

Implementation of thematched-filter algorithm startswith read-
ing the galaxy catalog. For each galaxy i in the sample, we read
in the positions � i and � i, the extinction-corrected five-band ap-
parent magnitudes and their errors, and the redshift zi if it has a
matched spectrum. Using the flux and color information, we com-
pute a photometric redshift estimate using a neural network tech-
nique by Lin et al. (2006), as well as k-corrections and estimated
rest-frame colors for each galaxy, which we add as input to the
cluster-finding algorithm.

The next step is to define the cluster model we adopt for the
filters, including the surface density profile�c(r), the luminosity
function �(M ), and the assumedGaussian modes of photometric
redshift uncertainties. The field density model Pf (m; z) is con-
structed from global number counts of the surveyed background
galaxy distributions as a function of magnitude and redshift, as

shown in equation (4).We then incorporate these models into the
Poisson likelihood functions as discussed above.
To map the likelihood distributions of the surveyed area, we

grid the sky using the Healpix package of Górski et al. (2005),
which provides a useful hierarchical pixelization scheme of equal-
area pixels. In Kepner et al. (1999), the authors calculate the like-
lihoods by choosing galaxy positions on an adaptive grid, instead
of the using the uniform grids used in previous matched-filter
codes (Postman et al. 1996); this ensures sufficient resolution in
the high-density regions, while saving computational time and
memory for less dense regions. We follow this procedure, and
evaluate the likelihood functions at every galaxy position to locate
the peaks in the map as possible cluster centers. The cluster rich-
ness is optimized over the whole redshift range of our search at
intervals that converge to �z ¼ 0:001, and for a set of trial cluster
scale radii (rc) at 10 kpc h

�1 steps. The derived quantities for best-
fit cluster richness, redshift, and scale length thus correspond to
the parameters that maximize the likelihood function at the grid
position or candidate cluster center.
This algorithm possesses several new features. First, the clus-

ter algorithm is fully adaptive to 2D, 2.5D, and 3D cases in the
optical surveys, and can deal with data with these different attrib-
utes simultaneously. It can easily accommodate galaxy redshifts
with uncertainties in any forms and distributions, from purely
single-band imaging data to a complete spectroscopic redshift
survey, and it works well for the intermediate case in which pho-
tometric redshifts are estimated frommultiband color information.
Projection effects from foreground-background contamination,
which have been a long-standing problem for optically selected
clusters, are largely suppressed. This allows the detection of even
poorer systems at high redshift, and shows great potential for cur-
rent and future large, deeper surveys in the optical band. Second,
the current adaptive matched filter used single-Poisson statistics
in the likelihood analysis, compared to the two-step approach in
Kepner et al. (1999), which uses a coarse filter based on Gauss-
ian likelihood for preselection of clusters. We wrote our code in
Fortran 90, and by careful arrangement in computations and in
setting up the quick link search, the optimization of the Poisson
likelihood through the whole process is now affordable in terms
of execution time and memory. For a survey field of�300 deg2,
which is comparable to a typical SDSS stripe (York et al. 2000),
the modified adaptive matched-filter algorithm requires around
900 Mbytes of memory and takes about 30 hr for a single run
using one dual-processor node in a Linux Beowulf cluster with a
clock speed of 3.06 GHz per processor. With no necessity that
there be a minimum number of galaxies inside each virtual bin,
as is the case in the Gaussian algorithm, the Poisson statistics
remains robust in the common situation where there are too few
galaxies in each cell for Gaussian statistics to apply. Third, as
discussed in White & Kochanek (2002) and Kochanek et al.
(2003), the current density model explicitly includes the effect
of previously found clusters on the global likelihood function.
The procedure automatically separates overlapping clusters and
avoids multiple detections of the same system in the overdensity
regions, and is thus somewhat similar to the CLEANmethod used
in radio astronomy to produce maps (Högbom 1974; Schwarz
1978). We do not need to do extra cluster deblending work after-
ward. Finally, as discussed earlier, our approach to maximizing
the likelihood differs frommost previous cluster-finding techniques
that choose a fixed cluster scale or search radius.We optimize the
core radius for each individual cluster, and the cluster richness is
computed within a virial radius determined from galaxy over-
densities. This provides insights about the virial mass of such
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gravitational systems defined by density contrast, and better cor-
responds to what is done in theoretical treatments.

3. TESTS ON MOCK GALAXY CATALOGS

To evaluate the completeness and purity (false-positive rate)
of our cluster sample, as well as to assess howwell our measured
cluster properties correspond to the properties of the underlying
dark matter halos, we run the matched-filter algorithm on amock
galaxy catalog generated from a realistic cosmological N-body
simulation. Because of the large redshift range we are trying to
probe, it is important to do this with as large a simulation volume
as possible. In addition, because we seek here to test the behavior
of our algorithm using a combination of spectroscopic and pho-
tometric redshifts, it is useful to have a realistic galaxy population
in both the clusters and the field, with luminosities, colors, and a
relation between these quantities and environment that are a good
match to SDSS data. Here we have used a mock catalog based
on ADDGALS (adding density-determined galaxies to lightcone
simulations;Wechsler 2004; R. H.Wechsler 2008, in preparation),
a method designed to model relatively bright galaxies in large-
volume simulations.

The underlying darkmatter simulation used here tracks 109 par-
ticles ofmass 2:25 ; 1012 h�1M� in a periodic cubic volumewith
side length of 3 h�1 Gpc, using a flat �CDM cosmology with
�m ¼ 0:3, �8 ¼ 0:9, and h ¼ 0:7 (the Hubble Volume Simula-
tion; Evrard et al. 2002). Halos are identified for masses above
2:7 ; 1013 h�1M�. Data are collected on the past light cone of an
observer at the center of the volume. The size of the simulation
enables the creation of a full-sky survey out to redshift of z ¼ 0:58,
and is thus suited to testing our cluster-finding algorithm out to
high redshifts using the SDSS imaging data.

Galaxies are connected to individual dark matter particles on
this simulated light cone, and are subject to several empirical con-
straints. The resolution of the simulation allows the mock catalog
to include galaxies brighter than about 0.4 L�; the number of
galaxies of a given brightness placed within the simulation is
determined by drawing galaxies from the SDSS galaxy lumi-
nosity function (Blanton et al. 2003), with 1.6 mag of luminosity

evolution assumed per unit redshift (the same assumption made
by our cluster-finding algorithm). The choice of which particle
these galaxies are assigned to is determined by relating the particle
overdensities (on a mass scale of�1 ; 1013 M�) to the two-point
correlation function of the particles; these particles are then chosen
to reproduce the luminosity-dependent correlation function as
measured in the SDSS by Zehavi et al. (2004).

Finally, colors are assigned to each galaxy by measuring their
local galaxy density (here, the fifth-nearest neighbor within a
redshift slice), and assigning to them the colors of a real SDSS
galaxy with similar luminosity and local density. The local den-
sity measure for SDSS galaxies is taken from a volume-limited
sample of the CMU-Pitt DR4Value AddedCatalog. Thismethod
produces mock galaxy catalogs that reproduce the luminosity and
color correlation function of the real sky. The createdmock galaxy
sample therefore provides a unique tool to assess the performance
of the SDSS cluster-finding algorithms in terms of completeness
and purity, as well as how the observables of the detected clusters
correspond to dark matter halos, assuming that galaxy clusters
trace the underlying halo population in the universe.

Since precise spectroscopic redshift measurements are only
available for the SDSSmain sample galaxies (Strauss et al. 2002)
and LRGs (Eisenstein et al. 2001), we must use photometric red-
shift estimates for most of the galaxies. In order to accurately
reproduce this scenario in the simulations, we scatter the given
redshifts of mock galaxies according to the error distributions of
photometric redshift estimates, which are obtained by calibrating
a sample of�140,000 SDSS photometric redshifts to their known
corresponding spectroscopic measurements from the SDSS spec-
troscopic survey and various other sources such as CNOC2 (Yee
et al. 2000), CFRS (Lilly et al. 1995a), DEEP (Weiner et al.
2005), and 2SLAQ LRG (Padmanabhan et al. 2005). The pho-
tometric redshifts were computed using a neural network tech-
nique by Lin et al. (2006) and H. Lin et al. (2008, in preparation);
see also the short discussion in the SDSS DR5 data release paper
(Adelman-McCarthy 2007). The comparison between calculated
photometric redshifts and measured spectroscopic redshifts is
shown in Figure 1 for both the red and blue galaxy samples. The

Fig. 1.—Calculated photometric redshifts vs. corresponding spectroscopic measurements for early-type galaxies (or red galaxies, left), and late type galaxies (or blue
galaxies, right). Here, red means g� r > 1:3, and blue means g� r < 1:3.
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distributions of sampled redshift uncertainties are derived for
different magnitudes and redshift bins, and are found to be well
described by a combination of multiple Gaussian fits, as shown,
for example, in Figure 2. The resulted fitting parameters are used
for the scattering of mock galaxy redshifts in the simulation. In
applying the cluster-finding technique to the real SDSS data,
however, we use the photo-z errors that are based on the nearest
neighbor error estimate method (NNE; Lin et al. 2006) instead of
deriving ‘‘empirical’’ error estimates collectively; this makes it
possible to get an estimate of the error for each individual object,
and better constrains the photometric redshift uncertainty, espe-
cially for galaxy samples with photo-z errors that depend strongly
on magnitudes and the actual redshifts. We find that the com-
puted errors correspond reasonably well with the empirical ones
derived from statistics, with exceptions only for catastrophic ob-
jects. More details will be discussed in a subsequent paper on the
application of the modified adaptive matched-filter technique
with SDSS data.

To summarize, the implementation of a simulation of observed
galaxy redshifts in a mock sample proceeds as follows: for gal-
axies that satisfy the SDSS spectroscopic target selection criteria,
we take the given galaxy redshifts as spectroscopic measure-
ments, while for the rest of the samplewe use scattered redshifts to
mimic the photometric redshift estimates. As discussed above in
x 2, there are a few percent of such galaxies that fall into the red-
shift and magnitude ranges where no good calibrations are avail-
able. For these galaxies, we treat them as if there were no redshift
information at all to put into the algorithm.We also impose on the
mock galaxy catalog an apparent magnitude cut (r < 21), which
we also intend to adopt in the SDSS imaging sample. The pro-
cedure described above thus provides the a mock catalog with
the characteristics most similar to the SDSS survey, and allows

us to explore the performance of the cluster-finding algorithm on
real SDSS data.
Themodifiedmatched-filter algorithm is then run on the mock

galaxy catalog, and the detected clusters are comparedwithmatched
known halos given in the simulation. We find that the matches
are generally robust against details of the matching techniques,
as pointed out byMiller et al. (2005; although see also the discus-
sion of various matching algorithms in Rozo et al. 2007). Here
we adopt a matching criterion of projected separation between
the detected cluster and the candidate matched halo within the
virial radius r200 and with a redshift difference �z < 0:05. To
evaluate the completeness of the cluster sample, we match each
dark halo to the nearest detected cluster within the projected clus-
ter r200 and�z of 0.05, while inmeasurement of purity, wematch
clusters to their corresponding halos by applying the same criteria.
In the case of multiple matches, which are possible when using
these matching algorithms, we designate the most massive halo
within the searching space as the real match. Other methods have
also been tried in efforts to refine the matching process, but no
significant changes have been found in the final results.

4. RESULTS AND DISCUSSIONS

In this section, we present the results of running the modified
adaptive matched-filter algorithm on the simulation-based mock
catalogs. These include the completeness and purity check of the
detected cluster sample, the derived cluster properties, such as
estimated redshift and richness, and the expected scaling relations
that would link the observed clusters to true halo distributions.

4.1. Completeness and Purity Check

We define the completeness C of the selected cluster sample
as a cumulative function of M200, the mass within the virial

Fig. 2.—Examples of multiple Gaussian fits for the error distributions of computed photometric redshifts. The derived fitting parameters are used to scatter the
known redshifts of mock galaxies in order to simulate the practice with real SDSS data.
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radius inside which the overdensity is 200 times the critical
density:

C(M200) ¼
Nfound

N total

; ð11Þ

where Nfound is the number of halos with mass greater thanM200

matched to clusters, and N total is the total number of halos above
that mass.

Figure 3 shows the completeness of the detected cluster sam-
ple as a function of redshift (left) and the virial mass of matched
dark matter halos (right). The cluster sample, which has a rich-
ness cut at �200 > 20, is over 95% complete for objects with
M200 > 2:0 ; 1014 h�1M�, and�85% complete for objects with
masses above 1:0 ; 1014 h�1 M� in the redshift range of 0:05 <
z < 0:45. As we will find in the subsequent discussion of cluster
scaling relations, the richness cut we impose on the cluster sam-
ple contributes to some of the incompleteness for less massive
objects because of the large scatter in the cluster richness-mass
relation; many of thematched clusters at�1:0 ; 1014 h�1M� are
simply scattered below the richness cut, and thus are not included
in the computation of the completeness. This can be relieved by
lowering the richness cut of the cluster sample, although we
choose to retain this cut for the purity considerations below.

Figure 3a also shows that the completeness level of the cluster
sample remains almost flat out to z � 0:45, beyondwhich it suffers
a significant decline. This is at least partly due to the volume limit
of the mock catalog, which only extends to z ¼ 0:58. When we
scatter the given galaxy redshifts with photometric redshift errors,
which become large around z � 0:5, many of the galaxies near the
far edge of the light cone are scattered away, while fewer galaxies
are shifted into that range, since they are absent from the simula-
tion. The apparent magnitude cut we have applied to the mock
galaxy sample may also contribute to incompleteness at high red-
shift. Taking into consideration the necessary k-corrections, the
galaxy sample is no longer complete down to the luminosity of
0.4 L�, which is the limit assumed throughout the simulation tests.
The matched filter therefore loses some ability to detect less rich

systems at redshifts of z � 0:5 and beyond, since many fewer gal-
axies are bright enough to be observable at that distance in the
current survey. We have not investigated these effects in detail,
although the onset of clear incompleteness correspondswell to the
distance at which they become important.

We similarly define the purity P of the selected cluster sample
as a cumulative function of cluster richness �200, which is the
total cluster luminosity in units of L� inside its virial radius r200:

P(�200) ¼
Nmatch

N total;�
; ð12Þ

where Nmatch is the number of clusters with richness greater than
�200 matched to halos, and N total;� is the total number of clusters
with richness above �200.

The results of the purity check for the obtained cluster catalog
are shown in Figure 4. The sample is over 95% pure for clusters
with �200 > 30, and around 90% pure for clusters with �200 >
20 over thewhole redshift range out to z � 0:45.Aswill be shown
in the richness-mass relationship below, these two richness thresh-
olds correspond toM200 � 6:0 ; 1013 h�1 M� andM200 � 4:0 ;
1013 h�1M�, respectively. It is worth noting that the lower purity
for �200 > 20 is clearly going to be affected by halo incomplete-
ness in the simulation, since some of the matched halos for this
richness will fall below the mass resolution of the halo cat-
alog, which means that the purity we have derived above is
probably a lower limit, following a logic similar to the com-
pleteness arguments.

To ensure a reasonably high purity of selected clusters, we
therefore apply a �200 > 20 cut for the cluster catalog, which is
used for analysis of completeness, as well as cluster-derived prop-
erties and scaling relations. The purity measurement shows a
slight but notable uptrend in the last redshift bin of z � 0:45 0:5,
which could be similarly explained by the arguments above
in the completeness discussions. This reflects a shift in the
richness-mass scaling relation at the high redshift end, where
clusters with the same richness measurements may correspond to
systems that are actually richer and more massive, because of the

Fig. 3.—Completeness of the detected cluster sample as a function of redshift (left) and the virial mass of matched halos (right). The sample shows a consistent
completeness of >95% complete for halos with M200 > 2:0 ; 1014 h�1 M�, and is �85% complete for halos with M200 > 1:0 ; 1014 h�1 M� in the redshift range of
0:05 < z < 0:45.
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underrepresentation of galaxies that are observable in that red-
shift range. It is therefore wise to limit the current cluster catalog
to a redshift of z ¼ 0:45 in order to extract a uniform sample for
statistical use, although the catalog using real SDSS datamaywell
go deeper reliably.

4.2. Derived Cluster Properties and Scaling Relations

As is discussed in x 2, for each selected cluster a redshift es-
timate is found for the system by thematched filter that optimizes
the detection likelihood at the galaxy position given as cluster
center. This measurement is then taken as the estimated redshift
for the cluster. Since all the halos have known redshifts in the
simulation, by matching the detected clusters to halos following
the procedure described in x3, we can compare the derived clus-
ter redshifts with the true redshifts of associated halos.

Figure 5 illustrates the comparison between estimated cluster
redshifts and known halo redshifts. For clusters with redshifts
below z ¼ 0:25 where spectroscopic redshift measurements are
often available for member galaxies, the derived cluster redshift
estimates precisely reproduce the true redshifts of corresponding
dark halos. The inclusion of spectroscopic information of input
galaxies markedly sharpens the cluster detection likelihood in the
line-of-sight dimension, and thus provides accuratemeasurements
of the cluster redshifts. In the higher redshift range, where spectro-
scopic measurements become rare and photometric estimates
dominate, the plot illustrates a larger dispersion,while thematched
filter still gives robust determinations of cluster redshifts, even
with only photometric galaxy redshift information for inputs. We
find that the accuracy of the redshift estimates does increase with
cluster richness as expected, although this is mostly accounted for
by the higher fraction of cluster galaxy members with spectro-
scopicmeasurements inside these systems. There is a slight uptrend
bias seen at the redshift of z � 0:45, which we see as a similar
indication of the incompleteness of the input galaxy sample near
the high end of the redshift range for this mock catalog because
of the volume limit andmagnitude cut. The estimated cluster red-
shift determined from maximum likelihood tends to drift toward
smaller values in some cases, since the detection probability at

higher redshift is suppressed by such effects. We also note the
existence of a few serious outliers, which probably represent the
occasional existence of a mismatch between relevant clusters and
dark halos due to projection effects or false-positive detections.
The normalized cluster richnesses�200 are also compared with

the virial mass M200 of matched halos. The results are shown in
Figure 6. We find that the richness-mass scaling relation follows

�200 ¼ (47:2 � 4:1) ;
M200

1014 h�1 M�

� �1:03�0:04

; ð13Þ

which is a roughly linear fit. Whether this is correct or not clearly
depends on the details of the simulation input, and the way the

Fig. 4.—Purity of the detected cluster sample as a function of redshift (left) and the cluster richness (right). The derived catalog is over 95% pure for clusters with
�200 > 30 and around 90% pure for �200 > 20 in the redshift range of 0:05 < z < 0:45.

Fig. 5.—Comparison between estimated cluster redshifts and known redshifts
of matched halos.
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simulation was constructed gives no easy clue to what the results
should be.What is important in this test, however, is thatwe recover
what is present in the simulations, not what might or might not be
present in the real universe. To that end, we have constructed three
more plots. The first, Figure 7, compares the cluster richness de-
termined by the present algorithmwith the total three-dimensional
luminosity of the matched halos; the agreement is very good, with
no bias evident at either the sparse or the rich end. Given this
agreement and the results of Figure 6, the next plot, Figure 8, of
the 3D halo luminosity versus the 3D halo mass, contains no sur-
prises. The simulated halo mass is, in fact, linear with its total lu-
minosity, and we recover this relationship.

Figure 9 compares the derived cluster virial radius r200 from the
cluster-finding algorithm and the r200 determined from 3D galaxy
overdensities. The agreement is excellent at small virial radii, al-
though there is a strong hint that the algorithm slightly over-
estimates large virial radii by 7% or thereabouts. This is almost
certainly due to the assumption of a singleNFWprofile to describe
the cluster; neighboring halos have rather different effects in the
cylinder to which the algorithm is sensitive and the corresponding
sphere in the simulations, but it is gratifying that the effects are as
small as they are. These results further justify our choice to refer
our richnessmeasurements to the commonly used virial radius de-
termined from galaxy overdensities.

It is, however, clear that the scatter in the richness-mass relation
derived from the cluster finding algorithm (Fig. 6) is somewhat
larger than that of the intrinsic richness-mass relation in the sim-
ulations (Fig. 8), which can be read as an indication of compli-
cations in the cluster-halo matching process, e.g., the inevitable
difference between the cluster finder and the halo finder regarding

fragmentation and merging, differing shapes between the galaxy
and mass distributions, and, even further, the variable mass-to-light
ratios inside the systems incorporated in the current dark matter
simulations. Despite these intrinsic dispersions, the richness-mass
scaling relation shows a strong linear correspondence between theFig. 6.—Comparison between derived cluster richness and the virial mass of

matched halos. The cluster richness �200 is the total luminosity of the cluster in
units of L� inside its virial radius r200.

Fig. 7.—Comparison between derived cluster richness and the total luminosity
of matched halos in units of L�. The cluster richness �200 is the total luminosity of
the cluster in units of L� inside its virial radius r200.

Fig. 8.—Comparison between the virial mass of matched halos and their lu-
minosities in units of L�. The dashed line is the best-fit cluster richness-mass
scaling relation given in Fig. 6.
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observables and the mass, and thus makes it possible to extract
the true halo distribution in the universe from the observed cluster
abundance and correlation functions. It is important to note that
the simulation from which the catalog was made is a dark-matter-
only simulation, and thus effects whichmaywell exist in real clus-
ters and which can affect the baryon fraction in the intracluster gas
and galaxies (see, for example, Kravtsov et al. 2005) as a function

of cluster mass are absent here; however, the fact that we recover a
linear relation fromour 3D simulations indicates thatwe should be
able to investigate a possiblymore complex relationship in the real
universe.

5. CONCLUSIONS

We present a modified matched-filter algorithm that is de-
signed to construct a comprehensive cluster catalog from the Sloan
Digital Sky Survey, but is applicable to any deep photometric
survey. The technique is fully adaptive to 2D, 2.5D, and 3D optical
surveys, as well as to various cluster scales and substructures.
The cluster-finding algorithm has been tested against a realistic

mock SDSS catalog from a large N-body simulation. The results
suggest that the selected cluster sample is�85%complete and over
90% pure for systemsmoremassive than 1:0 ; 1014 h�1M�with
redshifts up to z ¼ 0:45. The estimated cluster redshifts derived
from the maximum likelihood analysis show small errors with
�z < 0:01, and the normalized cluster richness measurements fit
linearly with the virial mass of matched halos, the correct relation
in this simulation. This offers hope that the (very likely nonlin-
ear) relation between richness and halo mass that exists in the
real universe can be investigated with these techniques.
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